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ABSTRACT
The QR factorization is one of the most important and
useful matrix factorizations in scientific computing. A re-
cent communication-avoiding version of the QR factoriza-
tion trades flops for messages and is ideal for MapReduce,
where computationally intensive processes operate locally
on subsets of the data. We present an implementation of
the tall and skinny QR (TSQR) factorization in the Map-
Reduce framework, and we provide computational results
for nearly terabyte-sized datasets. These tasks run in just a
few minutes under a variety of parameter choices.

Categories and Subject Descriptors
G.1.3 [Numerical analysis]: Numerical Linear Algebra—
Sparse, structured, and very large systems (direct and itera-
tive methods); H.2.8 [Database Management]: Database
Applications—Data mining

General Terms
Algorithms, Performance

Keywords
matrix factorization, QR factorization, TSQR, linear regres-
sion, Hadoop

1. INTRODUCTION
The thin QR factorization of an m×n matrix A with m >

n computes an m×n matrix Q with orthogonal columns and
an n× n upper triangular matrix R such that

A = QR. (1)

Standard methods for computing the QR factorization are
numerically stable [12], which has made it one of the most
useful tools in scientific computing. In particular, it yields
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stable methods for least squares data fitting [2], eigenvalue
computations [10], and null-space methods for optimiza-
tion [11], to name a few. As the scale and scope of scientific
computations increase, the technology of QR factorizations
must be updated to meet the requirements of modern su-
percomputing environments, grid computations, and Map-
Reduce environments.
However, the projection operations originally formulated

to stably compute the factors Q and R assume a serial com-
puting paradigm. Efforts to parallelize these operations have
followed advances in parallel architectures [13]. For exam-
ple, modern solvers work on blocks of a matrix to reduce the
number of serial steps. But the serial approach has remained
fundamentally unchanged. Thus, the resulting implementa-
tions have many synchronized steps; see, for example, the
panel-QR routine in the state-of-the-art dense linear algebra
library ScaLAPACK [4]. The standard approach is particu-
larly ill-suited to the MapReduce environment because each
step of the algorithm involves changing the entire matrix.
By examining trends in supercomputing hardware, Dem-

mel et al. [8] showed that advances in processor perfor-
mance – as measured by floating point operations per sec-
ond – have greatly surpassed advances in communication
performance. Consequently, they propose a communication-
avoiding paradigm to revise dense linear algebra operations
– such as the QR factorization – for modern supercomputer
architectures. They present and analyze a communication-
avoiding QR (CAQR) that essentially trades flops for mes-
sages, yielding a stable algorithm with optimal locality. The
key component of CAQR is a modification of the thin QR
factorization for matrices with many more rows than columns
– the so-called Tall and Skinny QR (TSQR). The essence of
TSQR is to perform smaller QR factorizations on row blocks
of the tall matrix and to combine groups of R factors in such
a way as to avoid communication. Then another round of
smaller QR factorizations is performed; this process repeats
until a final R factor is computed. The matrix Q of orthog-
onal columns is never explicitly formed, but premultiplying
a vector by QT can be done efficiently; this is sufficient for
many applications, e.g. least squares data-fitting. Beyond
CAQR, the TSQR method also serves as an essential com-
ponent of block iterative algorithms – such as block Krylov
solvers for linear systems of equations – where the opera-
tion of a vector norm is replaced by a QR factorization on
a matrix with many more rows than columns.
The communication-avoiding paradigm is appealing for

a grid computing environment, where communication over-
head is dramatically more expensive than computing power
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on individual processors. By trading expensive synchroniza-
tion points for additional local computation, communication-
avoiding algorithms often fit into the MapReduce environ-
ment [7]. In MapReduce, these algorithms take the com-
putation to the data in-situ, instead of communicating the
data between computers. Here, we present the TSQR algo-
rithm and its implementation in a MapReduce computing
environment. By treating the matrix as an unordered col-
lection of rows, we formulate both the mapping and reducing
step as streaming TSQR factorizations. These approaches
update a local QR factorization in response to a new block
of rows. With this implementation, we can compute the QR
factorization on terabyte scale data sets stored redundantly
on the hard disks of a MapReduce cluster, and the bulk of
the computation is done with data-local operations.
The related work falls into two broad categories: statisti-

cal algorithms in MapReduce, and tall-and-skinny QR fac-
torizations in high-performance computing architectures. A
recent proposal in the Apache Mahout package is to imple-
ment linear regression – a natural application of the tall-and-
skinny QR factorization – using a stochastic gradient descent
method [21]. In contrast, our approach allows these prob-
lems to be solved exactly when the matrix has a particular
shape; see the conclusion for some ideas about future work
related to Mahout. Another frequently used MapReduce
computation is principal components analysis (PCA). The
standard technique for implementing this algorithm is to
compute the covariance matrix directly. See Section 2.4 for
more about some issues with this approach.
The success and flexibility of the TSQR procedure devel-

oped by Demmel et al. [8] has sparked a small revolution
in applications of this technique. It has been implemented
directly inside the MPI framework for parallel codes as a
native reduce operation [14]. This construction allows codes
to use the TSQR procedure optimally on each architecture.
Others have successfully used the TSQR procedure to com-
pute the QR factorization in a grid environment [1] and on
Amazon’s EC2 platform [6].

2. THE TSQR FACTORIZATION
We now describe the idea behind a TSQR factorization

and its implementation in a MapReduce system. As previ-
ously mentioned, this algorithm is a natural fit when only
the R factor is required. The following derivation of the idea
closely parallels ref. [8].
Consider a matrix A with 8n rows and n columns, which

is partitioned as

A =

A1
A2
A3
A4

 .

In this example, each Ai is a 2n× n matrix, but in general,
the idea is that each Ai is a small local matrix. We assume
that Ai is small enough that we can efficiently compute its
QR factorization with the standard algorithm on a single
processor. These independent QR factorizations provide a
factorization of A:

A =

Q1
Q2

Q3
Q4


︸ ︷︷ ︸

8n×4n

R1
R2
R3
R4


︸ ︷︷ ︸
4n×n

.

This is not yet a QR factorization for A. Note, however,
that a QR factorization of the 4n×n matrix on the right will
produce a QR factorization of A. (Recall that the product
of orthogonal matrices is orthogonal.) That is,

A =

=Q︷ ︸︸ ︷Q1
Q2

Q3
Q4


︸ ︷︷ ︸

8n×4n

Q̃︸︷︷︸
4n×n

R̃︸︷︷︸
n×n

.

But, suppose for the sake of the example that a 4n× n QR
factorization is itself too large for any single processor. Con-
sequently, we repeat the small QR factorizations for both
2n× n pairs of matrices:

R1
R2

R3
R4


︸ ︷︷ ︸
4n×n

=
[

Q5

Q6

]
︸ ︷︷ ︸

4n×2n

[
R5

R6

]
︸ ︷︷ ︸
2n×n

.

One final QR factorization of the 2n×n matrix on the right
remains. After that operation,

A =

=Q︷ ︸︸ ︷Q1
Q2

Q3
Q4


︸ ︷︷ ︸

8n×4n

[
Q5

Q6

]
︸ ︷︷ ︸

4n×2n

Q7︸︷︷︸
2n×n

R7︸︷︷︸
n×n

is a QR factorization. What this examples shows is that to
produce the matrix R, the only operation required is the QR
factorization of a 2n×n matrix. As stated, Q is the product
of a sequence of three orthogonal matrices. We return to the
issue of computing Q in Sections 2.2 and 2.3
As noted in ref. [8], any sequence or tree of QR factoriza-

tions of this form will work. The above example shows how
to compute a QR factorization with maximum parallelism.
(The factorizations of Ai are independent, as are the factor-
izations of

[
RT

1 RT
2
]T and

[
RT

3 RT
4
]T .) In particular,

suppose that the matrix A is presented one row at a time.
Further, suppose that we have the ability to store 3n rows
of A and compute a QR factorization for these stored rows.
Then the following sequence of four QR factorizations will
produce the R factor:

A1 = Q1R1;
[

R1
A2

]
= Q2R2;

[
R2
A3

]
= Q3R3;

[
R3
A4

]
= Q4R4.

As an algorithm, this procedure first reads and stores the
2n rows for A1. It then computes a QR factorization of this
block, yielding an n×n matrix R1. Next, it reads in another
2n rows for A2. At this point, its buffer of rows is full, and
consequently, it “compresses” that to a new matrix R2 via
a second QR factorization. This process continues in blocks
of 2n rows until there are no more rows of A left. In a single
equation, it computes:

A =

=Q︷ ︸︸ ︷[Q1
I2n

I2n
I2n

]
︸ ︷︷ ︸

8n×7n

[
Q2

I2n
I2n

]
︸ ︷︷ ︸

7n×5n

[
Q3

I2n

]︸ ︷︷ ︸
5n×3n

Q4︸︷︷︸
3n×n

R︸︷︷︸
n×n

.
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Figure 1: A pictorial description of the two mappers. The dashed arrows describe reading a block of rows
from the input.
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qr

Q
emit
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Reducer 1
Serial TSQR

Figure 2: A pictorial description of the reducer and
the steps involved in its serial TSQR procedure.

We now combine these two computation trees to implement
a TSQR algorithm on a MapReduce computer.

2.1 A TSQR reduction tree for MapReduce
In the previous section, we saw how to compute the R

factor in a QR factorization for a tall-and-skinny matrix
in two scenarios: a maximally parallel computation and a
completely serial computation. To implement a TSQR pro-
cedure on a MapReduce architecture, we combine these two
cases.
In this implementation, the matrix exists as a set of rows.

That is, each record, or key/value pair, in the MapReduce
environment is a row identifier and an array containing the
values in the row. This storage implies that a tall-and-skinny
matrix will have many records. Due to the distributed na-
ture of the file systems underlying a MapReduce system, this
matrix will be partitioned across the many different comput-
ers and disks constituting the entire MapReduce cluster. In
terms of the examples from the previous section, each sub-
matrix Ai corresponds to a different split of the distributed
data. Also, note that the matrix need not be stored explic-
itly. In Section 3.5, we describe how to solve a least squares
problem on a single file representing a collection of images.
There, we build the rows of the least-squares matrix directly
from the raw image data.

Given the explicit or implicit storage of the matrix A, each
mapper in the MapReduce TSQR implementation runs a se-
rial TSQR routine, acquiring the matrix a single row at a
time. After it has acquired all the rows available, it outputs
the R factor for these rows. Each row of the output has a
random key. Thus, the input keys are ignored. Also, each
reducer runs the same serial TSQR procedure. There is no
need for a local "combine" operation because the identity of
each row is ignored and the map already outputs the most
highly reduced form of its data. A high level view of the op-
erations in the map and reduce is shown in Figures 1 and 2.
A complete implementation of this mapper and reducer us-
ing the hadoopy Python framework for Hadoop streaming
programs is given in Figure 3.
When this MapReduce program is run with a single re-

ducer, the output from that reducer is the R factor. Using
only one reducer, however, eliminates some opportunities for
parallelism. In the Hadoop file system, for instance, large
files are divided into multiple segments called splits. The
total number of mappers is the number of files multiplied
by the number of splits. In most realistic scenarios, there
will be more than a single file constituting the input matrix
A. This phenomenon often happens for one of two reasons.
The first is that the data were collected in discrete incre-
ments, which are analyzed together – this would be the case
for an aggregation of daily log files. The second is that the
data are output by a previous MapReduce job, in which the
number of files is equal to the number of reducers. Using
many mappers and only a single reducer is problematic for
this application because the reducer must compute a serial
TSQR on the output from all the mappers, which could be
a lengthy serial computation. An alternative is to use a
multi-iteration TSQR approach; see Figure 4. When using
two MapReduce iterations, the output from the mappers are
fed into a large set of reducers. The output of these reducers
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import random, numpy, hadoopy
class SerialTSQR:

def __init__(self,blocksize,isreducer):
self.bsize=blocksize
self.data = []
if isreducer: self.__call__ = self.reducer
else: self.__call__ = self.mapper

def compress(self):
R = numpy.linalg.qr(numpy.array(self.data),’r’)
# reset data and re-initialize to R
self.data = []
for row in R:

self.data.append([float(v) for v in row])

def collect(self,key,value):
self.data.append(value)
if len(self.data)>self.bsize*len(self.data[0]):

self.compress()

def close(self):
self.compress()
for row in self.data:

key = random.randint(0,2000000000)
yield key, row

def mapper(self,key,value):
self.collect(key,value)

def reducer(self,key,values):
for value in values: self.mapper(key,value)

if __name__==’__main__’:
mapper = SerialTSQR(blocksize=3,isreducer=False)
reducer = SerialTSQR(blocksize=3,isreducer=True)
hadoopy.run(mapper, reducer)

Figure 3: A complete hadoopy implementation of
the mapper and reducer. See the text for more de-
scription.

then becomes the matrix input for another TSQR procedure
– although this iteration can use an identity mapper to elim-
inate extra work involved in processing the output from the
previous reduce, which is guaranteed not to change the out-
put. As long as the last iteration has only a single reducer,
the algorithm outputs the correct R factor.
The hadoopy implementation in Figure 3 does not con-

tain the logic to handle a multi-stage iteration; please see
our publicly available codes for that implementation. In
both implementations, we did not invest any effort in con-
structing a custom data partitioner to ensure data locality
between the mappers and reducers in a multi-stage itera-
tion. Instead, we investigated increasing the minimum split
size to reduce the number of mappers; see Section 3.4 for
these experiments.

2.2 Solving a least-squares problem
Thus far, this manuscript has described how to compute

a TSQR factorization and implement that algorithm on a
MapReduce system. This algorithm is a key ingredient in
solving least-squares problems. Consider a full-rank, least
squares problem with a tall-and-skinny matrix A ∈ Rm×n,
m� n:

minimize ‖b−Ax‖.

The following derivation mimics that found in many numer-

ical linear algebra textbooks and is repeated to illustrate
how a QR factorization may be used. Let A = Q̃R̃ be a
full-QR of A. In the full-QR factorization, Q̃ is square and
orthogonal, and R̃ = [RT 0T ]T , where R is n×n and upper
triangular. Note that Q̃ =

[
Q Q̃2

]
where Q is the thin-QR

factor. Then, by orthogonality,

‖b−Ax‖ = ‖Q̃T b− Q̃
T

Ax‖ =
∥∥∥∥[QT b

Q̃
T

2 b

]
−
[

Rx
0m−n×n

]∥∥∥∥ ,

for any vector x. Because R is full rank by assumption,
the solution of the linear system Rx = QT b is the solution
of the least squares problem. The value of the objective

function at the minimum is ‖Q̃T

2 b‖ =
√
‖b‖2 − ‖QT b‖2.

Using this approach to compute the solution requires the
vector QT b. Computing this vector seemingly requires the
matrix Q, but QT b may be computed without explicitly
forming Q. We illustrate this idea by returning to the ex-
ample in Section 2. Let A be the 4n × n matrix from the
example, and let b = [ bT

1 bT
2 bT

3 bT
4 ]T be partitioned confor-

mally with A. (In a MapReduce environment, this means
that we have the values of b stored with their corresponding
rows of A.) Using the QR factorization from before, note
that

QT b = QT
7

[
QT

5

QT
6

]QT
1

QT
2

QT
3

QT
4


b1

b2
b3
b4

 .

What this expression shows is that outputting QT
i bi from

each small QR factorization is enough to compute QT b
without explicitly forming Q.

2.3 The Q factor and a tall-and-skinny SVD
Of course, many applications require the Q factor. Given

R, we can compute Q = AR−1. This computation is easy
to implement on a MapReduce system. Using a similar idea,
we can also compute the SVD of a tall and skinny matrix
(see ref. [12] for more about the SVD). However, these ap-
proaches have numerical stability problems (see ref. [17] for
instance) and require a careful study of the orthogonality of
the computed factors. We hope to investigate these issues
soon.

2.4 Alternative approaches

Normal equations.
An elementary technique to solve a least-squares problem

is to use the normal equations given by the optimality con-
ditions for the least-squares problems:

AT Ax = AT b.

Let B = AT A. Then the Cholesky factorization of B is
B = RT R for an upper-triangular matrix R. For a full-
rank matrix A, this Cholesky factor R is the same as the
R factor in the QR factorization. Consequently, another
approach to compute R is to compute AT A and compute
a Cholesky factorization. This computation is also easy to
do in a MapReduce environment. However, this approach
has considerable numerical stability issues [19]. In our ex-
periments, it has performance comparable to the TSQR ap-
proach, which has good numerical stability assurances.
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Figure 4: A pictorial description of a multiple iteration routine.

Random sampling.
Another approach is to employ random sampling of the

matrix, or a random projection of the matrix (see ref. [9],
and other references within). The idea is that most of the
important quantities in a least-squares problem or QR fac-
torization lie in a low-dimensional space, which can be ob-
tained by randomly sampling rows of the matrix after an
appropriate projection. These algorithms have rigorous ap-
proximation bounds and failure probabilities. However, us-
ing a random sampling technique still requires touching all
the entries of the matrix. In our experiments, we observe
that the additional work performed in the TSQR approach
does not consume much additional time, and hence, we have
not investigated randomized techniques, because the deter-
ministic techniques have sufficient performance.

3. EXPERIMENTS
We implemented the TSQR algorithm outlined in the pre-

vious section in Hadoop 0.21 [20] streaming. Hadoop stream-
ing is a simple interface to a MapReduce system, which pipes
a stream of key-value pairs to and from an arbitrary pro-
gram via the standard input and output streams. We con-
structed this implementation using three different interfaces
to Hadoop streaming: the Dumbo python interface [3], the
hadoopy python interface [23], and a new custom C++ in-
terface. The two python frameworks provide an easy-to-use
environment and a rich set of numerical libraries via the
numpy Python package [15]. The C++ interface can be
viewed as a reference point for any Hadoop streaming ap-
proach. In the future, we hope to evaluation against other
TSQR approaches in MPI and grid environments.
We begin by describing our suite of synthetic test matri-

ces (Table 1) that we use to evaluate the performance of the
TSQR algorithms (Section 3.1). These problems are used to
provide insight into how the performance of the algorithm

changes when tweaking different parameters. The first set of
experiments shows the difference in performance from each
of the three different Hadoop streaming frameworks. Un-
surprisingly, the C++ implementation is the fastest (Ta-
ble 2). Please see Section 3.2 for additional discussion on
these frameworks. The next two sets of experiments inves-
tigate the effect of the local block size and Hadoopy split
size on the performance. The block size parameter deter-
mines the maximum size of a local QR factorization; and
the split size determines the number of Hadoop mappers
launched. The best performance results from a large, but
not too large, block size (Table 3) and a large split size (Ta-
ble 4). The final experiment uses the TSQR routine to solve
a least squares regression problem and find the principal
components of the tinyimages dataset [18], a 230 GB collec-
tion of nearly 80,000,000 small pictures. Using our slowest
framework, Dumbo, we can solve both of these problems in
around 30 minutes and project the C++ code would take
5-8 minutes.
All of the experiments are performed on a Hadoop cluster

with 64 nodes. Each node has a single quad-core Intel Core
i7-920 processor, 12 GB of RAM, and 4 2TB 7200 RPM hard
disks. The nodes are split between two racks. The within
rack connections are Gigabit Ethernet, and there is a single
10 Gigabit connection between racks.

3.1 Synthetic problems
In order to construct large scale synthetic problems, we

implement the data generators directly in MapReduce using
a Dumbo and numpy implementation. Let M be the number
of mappers used, m be the number of rows in the final ma-
trix and n be the number of columns. We deterministically
construct R as an n×n upper-triangular matrix of all ones.
This choice lets us quickly check that the computed answers
are correct, which they were for all experiments here. In the
first iteration of the construction, each mapper is assigned
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Table 1: The synthetic test matrices we use in this
manuscript. See §3.1.
Rows Columns HDFS Size Col. sums

(secs.)
1,000,000,000 50 453.3 GB 145
500,000,000 100 423.3 GB 161
100,000,000 500 381.2 GB 128
50,000,000 1000 375.8 GB 127

M/m rows to generate. Then each mapper generates a local,
random orthogonal matrix Qi with 2n rows. This matrix is
applied to R, and the resulting 2n rows are output. The
mappers repeat this process until they have output all m
rows. The output keys for these rows are random. The re-
duce step is just an identity reducer. However, with the ran-
dom output keys, the reduce step is a random permutation
of these rows, which is another orthogonal matrix transform.
On subsequent iterations, the mappers read in up to 2r rows,
and perform yet another orthogonal transformation with an-
other random Qi. Overall, there are three total iterations:
Mapper 1 to generate an initial matrix with a known R and
local orthogonal transforms; Reducer 1 to perform a permu-
tation of the rows; Mappers 2 and 3 to further transform
the matrix with additional orthogonal factors; and Reduc-
ers 2 and 3 to perform additional permutations. The result
is not a uniformly sampled random matrix with R as the
QR factor, but an easy-to-implement approximation. See
Table 1 for the details on the number of rows and columns
in the test problems. They are all constructed to be around
400GB in size, and with many more rows than columns. The
final number of reducers is 1000, and so each matrix con-
sists of 1000 separate files, stored in HDFS. We also provide
the time of a reference streaming computation on each ma-
trix. This computation is the total time it takes to compute
the column sums using our C++ streaming framework (de-
scribed next), and approximates the minimum time to do
one non-trivial MapReduce iteration. The reported times
were consistent across three repetitions of the experiment.
(We thank James Demmel for suggesting this performance
benchmark.)

3.2 Prototyping frameworks
Each of the three streaming frameworks receive key and

values pairs as binary encoded “TypedBytes” [3]. These
TypedBytes allow binary data to be passed between Hadoop
and Hadoop streaming mappers and reducers, and include
integer, floating point, and array primitives. The values are
encoded with a big endian byte order following the Java con-
vention. These values must then be converted into the native
byte order before they can be used, and this conversion op-
eration occupies the majority of the time in decoding Type-

dBytes data. Once a key-value pair has been decoded, the
three streaming implementations run the same algorithm as
illustrated in Figure 3. On output, they re-encode the data
for each row in big endian byte order.
In Table 2, we show the performance of the three imple-

mentations for the test matrix with 500 columns. This table
shows the performance of three different Hadoop streaming
frameworks using the TSQR algorithm. The QR columns
give the total time spent doing local QR operations in each
framework. The test matrix has 500 columns and uses a
two-iteration approach with 250 reducers in the first itera-
tion and 1 reducer in the second. We used a two-iteration
TSQR procedure, and show the total seconds taken by the
entire computation, each iteration, and the individual map
and reduce steps. Note that the mappers and reducers often
do bits of work in parallel, and thus, the sum of the map
and reduce time for an iteration is more than the total iter-
ation time. Also, we show the sum of time spent doing the
QR factorizations. These experiments show that hadoopy
is a more efficient Python framework for Hadoop streaming
than Dumbo. Additionally, the hadoopy framework takes
roughly twice as long as a C++ implementation. It seems
the hadoopy linear algebra (using numpy and ATLAS [22])
routines incur a significantly higher overhead than the C++
code (using ATLAS), which could bias the comparison.

3.3 Local block-sizes
The serial TSQR procedure implemented by all the map-

pers and reducers has a block size parameter to determine
how many rows to read before computing a local QR factor-
ization. These block size parameters are expressed in terms
of an integer multiple of the number of columns. For in-
stance, a block size of 3 means that the mappers will read
3 rows for each column before computing a local QR fac-
torization. We think of a block as an n × n chuck of the
matrix, where n is the number of columns. As we vary the
number of columns in the matrix, changing the block size
can cause a meaningful performance difference; see Table 3.
This computation uses a two iteration TSQR tree with our
C++ code; it shows increasing the blocksize increases perfor-
mance, but making it too large reduces performance. Each
row in the table gives the number of columns in the matrix,
the number of mappers used for the first iteration, and the
time in seconds for each the two iterations. The two itera-
tion algorithm used 250 reducers in the first iteration and 1
reducer in the second iteration.
The serial TSQR must repeat one block of work for each

subsequent QR compression step. Consequently, a small
block size causes a significant fraction of the total work to
be redundant. The problem with a large block size is that it
requires higher memory traffic. (Although, this could be im-
proved with a better implementation of QR in ATLAS [8].)

Table 2: Results for the three Hadoop streaming frameworks. See §3.2.
Iter 1 Iter 2 Overall
Map Red. Total Map Red. Total
Secs. QR (s.) Secs. QR (s.) Secs. Secs. Secs. QR (s.) Secs. Secs.

Dumbo 911 67725 884 2160 960 5 214 80 217 1177
hadoopy 581 70909 565 2263 612 5 112 81 118 730
C++ 326 15809 328 485 350 5 34 15 37 387
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Table 3: Results when varying block size. The best
performance results are bolded. See §3.3 for details.

Iter. 1 Iter. 2
Cols. Blks. Maps Secs. Secs.
50 2 8000 424 21
— 3 — 399 19
— 5 — 408 19
— 10 — 401 19
— 20 — 396 20
— 50 — 406 18
— 100 — 380 19
— 200 — 395 19
100 2 7000 410 21
— 3 — 384 21
— 5 — 390 22
— 10 — 372 22
— 20 — 374 22
1000 2 6000 493 199
— 3 — 432 169
— 5 — 422 154
— 10 — 430 202
— 20 — 434 202

3.4 Split size
There are three factors that control the TSQR tree on

Hadoop: the number of mappers, the number of reducers,
and the number of iterations. In this section, we investi-
gate the trade-off between decreasing the number of map-
pers, which is done by increasing the minimum split size in
HDFS, and using additional iterations. Using additional it-
erations provides the opportunity to exploit parallelism via
a reduction tree. Table 4 show the total computation time
for our C++ code when used with various split sizes and
one or two iterations. The block size used was the best per-
forming case from the previous experiment. Each row states
the number of columns, the number of iterations used (for
two iterations, we used 250 reducers in the first iteration),
the split size, and the total computation time. With a split
size of 512 MB, each mapper consumes an entire input file
of the matrix (recall that the matrices are constructed by
1000 reducers, and hence 1000 files). The two iteration test
used 250 reducers in the first iteration and 1 reducer in the
second iteration. The one iteration test used 1 reducer in
the first iteration, which is required to get the correct final
answer. (In the 1000 column test, using a smaller split size
of 64 or 256 MB generated too much data from the mappers
for a single reducer to handle efficiently.)
The results are different between 50 columns and 1000

columns. With 50 columns, a one iteration approach is
faster, and increasing the split size dramatically reduces the
computation time. This results from two intertwined behav-
iors: first, using a larger split size sends less data to the final
reducer, making it run faster; and second, using a larger split
size reduces the overhead with Hadoop launching additional
map tasks. With 1000 columns, the two iteration approach
is faster. This happens because each R matrix output by the
mappers is 400 times larger than with the 50 column experi-
ment. Consequently, the single reducer takes much longer in
the one iteration case. Using an additional iteration allows
us to handle this reduction with more parallelism.

Table 4: Results when varying split size. See §3.4.
Cols. Iters. Split

(MB)
Maps Secs.

50 1 64 8000 388
— — 256 2000 184
— — 512 1000 149
— 2 64 8000 425
— — 256 2000 220
— — 512 1000 191
1000 1 512 1000 666
— 2 64 6000 590
— — 256 2000 432
— — 512 1000 337

3.5 Tinyimages: regression and PCA
Our final experiment shows this algorithm applied to a

real world dataset. The tinyimages collection is a set of al-
most 80,000,000 images. Each image is 32-by-32 pixels. The
image collection is stored in a single file, where each 3072
byte segment consists of the red, green, and blue values for
each of the 1024 pixels in the image. We wrote a custom
Hadoop InputFormat to read this file directly and trans-
mit the data to our Hadoop streaming programs as a set of
bytes. We used the Dumbo python framework for these ex-
periments. In the following two experiments, we translated
all the color pixels into shades of gray. Consequently, this
dataset represents an 79,302,017-by-1024 matrix.
We first solved a regression problem by trying to predict

the sum of red-pixel values in each image as a linear combi-
nation of the gray values in each image. Formally, if ri is the
sum of the red components in all pixels of image i, and Gi,j

is the gray value of the jth pixel in image i, then we wanted
to find min

∑
i
(ri−

∑
j

Gi,jsj)2. There is no particular im-
portance to this regression problem, we use it merely as a
demonstration.
The coefficients sj are dis-
played as an image at the right.
They reveal regions of the im-
age that are not as important
in determining the overall red
component of an image. The
color scale varies from light-
blue (strongly negative) to blue
(0) and red (strongly positive).
The computation took 30 min-
utes using the Dumbo frame-
work and a two-iteration job with 250 intermediate reducers.
We also solved a principal component problem to find a

principal component basis for each image. Let G be matrix
of Gi,j ’s from the regression and let ui be the mean of the ith
row in G. The principal components of the images are given
by the right singular vectors of the matrix G−ueT where u
are all of the mean values as a vector and e is the 1024-by-1
vector of ones. That is, let G−ueT = UΣV T be the SVD,
then the principal components are the columns of V . We
compute V by first doing a TSQR of G − ueT , and then
computing an SVD of the final R, which is a small 1024-
by-1024 matrix. The principal components are plotted as
images in Figure 5. These images show a reasonable basis
for images and are reminiscent of the basis in a discrete
cosine transform.
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Figure 5: The 16 most important principal compo-
nent basis functions (by rows) and the amount of
variance explained by the top 100 (bottom left) and
all principal components (bottom right).

4. CONCLUSION
In this manuscript, we have illustrated the ability of Map-

Reduce architectures to solve massive least-squares prob-
lems through a tall and skinny QR factorization. We choose
to implement these algorithms in a simple Hadoop stream-
ing framework to provide prototype implementations so that
others can easily adapt the algorithms to their particular
problem. These codes are all available online.1 We envi-
sion that the TSQR paradigm will find a place in block-
analogues of the various iterative methods in the Mahout
project. These methods are based on block analogues of the
Lanczos process, which replace vector normalization steps
with QR factorizations. Because the TSQR routine solves
linear regression problems, it can also serve as the least-
squares sub-routine for an iteratively reweighted least-squares
algorithm for fitting general linear models.
A key motivation for our MapReduce TSQR implemen-

tation comes from a residual minimizing model reduction
method [5] for approximating the output of a parameterized
differential equation model. Methods for constructing re-
duced order models typically involve a collection of solutions
1See http://www.github.com/dgleich/mrtsqr.

(dubbed snapshots [16]) – each computed at its respective
input parameters. Storing and managing the terascale data
from these solutions is itself challenging, and the hard disk
storage of MapReduce is a natural fit.
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